翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Large-scale structure of the Cosmos : ウィキペディア英語版
Observable universe

The observable universe consists of the galaxies and other matter that can, in principle, be observed from Earth at the present time because light and other signals from these objects have had time to reach the Earth since the beginning of the cosmological expansion. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical volume (a ball) centered on the observer. Every location in the Universe has its own observable universe, which may or may not overlap with the one centered on Earth.
The word ''observable'' used in this sense does not depend on whether modern technology actually permits detection of radiation from an object in this region (or indeed on whether there is any radiation to detect). It simply indicates that it is possible ''in principle'' for light or other signals from the object to reach an observer on Earth. In practice, we can see light only from as far back as the time of photon decoupling in the recombination epoch. That is when particles were first able to emit photons that were not quickly re-absorbed by other particles. Before then, the Universe was filled with a plasma that was opaque to photons.
The surface of last scattering is the collection of points in space at the exact distance that photons from the time of photon decoupling just reach us today. These are the photons we detect today as cosmic microwave background radiation (CMBR). However, with future technology, it may be possible to observe the still older relic neutrino background, or even more distant events via gravitational waves (which also should move at the speed of light). Sometimes astrophysicists distinguish between the ''visible'' universe, which includes only signals emitted since recombination—and the ''observable'' universe, which includes signals since the beginning of the cosmological expansion (the Big Bang in traditional cosmology, the end of the inflationary epoch in modern cosmology). According to calculations, the ''comoving distance'' (current proper distance) to particles from the CMBR, which represent the radius of the visible universe, is about 14.0 billion parsecs (about 45.7 billion light years), while the comoving distance to the edge of the observable universe is about 14.3 billion parsecs (about 46.6 billion light years), about 2% larger.
The best estimate of the age of the universe is years〔 but due to the expansion of space humans are observing objects that were originally much closer but are now considerably farther away (as defined in terms of cosmological proper distance, which is equal to the comoving distance at the present time) than a static 13.8 billion light-years distance. It is estimated that the diameter of the observable universe is about 28.5 gigaparsecs (93 billion light-years, ), putting the edge of the observable universe at about 46.5 billion light-years away.〔(Frequently Asked Questions in Cosmology ). Astro.ucla.edu. Retrieved on 2011-05-01.〕
==The Universe versus the observable universe==
Some parts of the Universe are too far away for the light emitted since the Big Bang to have had enough time to reach Earth, so these portions of the Universe lie outside the observable universe. In the future, light from distant galaxies will have had more time to travel, so additional regions will become observable. However, due to Hubble's law regions sufficiently distant from us are expanding away from us faster than the speed of light (special relativity prevents nearby objects in the same local region from moving faster than the speed of light with respect to each other, but there is no such constraint for distant objects when the space between them is expanding; see uses of the proper distance for a discussion) and furthermore the expansion rate appears to be accelerating due to dark energy. Assuming dark energy remains constant (an unchanging cosmological constant), so that the expansion rate of the Universe continues to accelerate, there is a "future visibility limit" beyond which objects will ''never'' enter our observable universe at any time in the infinite future, because light emitted by objects outside that limit would never reach us. (A subtlety is that, because the Hubble parameter is decreasing with time, there can be cases where a galaxy that is receding from us just a bit faster than light does emit a signal that reaches us eventually〔〔(Is the universe expanding faster than the speed of light? ) (see the last two paragraphs)〕). This future visibility limit is calculated at a comoving distance of 19 billion parsecs (62 billion light years) assuming the Universe will keep expanding forever, which implies the number of galaxies that we can ever theoretically observe in the infinite future (leaving aside the issue that some may be impossible to observe in practice due to redshift, as discussed in the following paragraph) is only larger than the number currently observable by a factor of 2.36.〔The comoving distance of the future visibility limit is calculated on p. 8 of Gott et al.'s (A Map of the Universe ) to be 4.50 times the Hubble radius, given as 4.220 billion parsecs (13.76 billion light years), whereas the current comoving radius of the observable universe is calculated on p. 7 to be 3.38 times the Hubble radius. The number of galaxies in a sphere of a given comoving radius is proportional to the cube of the radius, so as shown on p. 8 the ratio between the number of galaxies observable in the future visibility limit to the number of galaxies observable today would be (4.50/3.38)3 = 2.36.〕
Though in principle more galaxies will become observable in the future, in practice an increasing number of galaxies will become extremely redshifted due to ongoing expansion, so much so that they will seem to disappear from view and become invisible.〔(Using Tiny Particles To Answer Giant Questions ). Science Friday, 3 Apr 2009. According to the (transcript ), Brian Greene makes the comment "And actually, in the far future, everything we now see, except for our local galaxy and a region of galaxies will have disappeared. The entire universe will disappear before our very eyes, and it's one of my arguments for actually funding cosmology. We've got to do it while we have a chance."〕〔See also Faster than light#Universal expansion and Future of an expanding universe#Galaxies outside the Local Supercluster are no longer detectable.〕 An additional subtlety is that a galaxy at a given comoving distance is defined to lie within the "observable universe" if we can receive signals emitted by the galaxy at any age in its past history (say, a signal sent from the galaxy only 500 million years after the Big Bang), but because of the Universe's expansion, there may be some later age at which a signal sent from the same galaxy can ''never'' reach us at any point in the infinite future (so for example we might never see what the galaxy looked like 10 billion years after the Big Bang), even though it remains at the same comoving distance (comoving distance is defined to be constant with time—unlike proper distance, which is used to define recession velocity due to the expansion of space), which is less than the comoving radius of the observable universe. This fact can be used to define a type of cosmic event horizon whose distance from us changes over time. For example, the current distance to this horizon is about 16 billion light years, meaning that a signal from an event happening ''at present'' can eventually reach us in the future if the event is less than 16 billion light years away, but the signal will never reach us if the event is more than 16 billion light years away.〔
Both popular and professional research articles in cosmology often use the term "universe" to mean "observable universe". This can be justified on the grounds that we can never know anything by direct experimentation about any part of the Universe that is causally disconnected from us, although many credible theories require a total universe much larger than the observable universe. No evidence exists to suggest that the boundary of the observable universe constitutes a boundary on the Universe as a whole, nor do any of the mainstream cosmological models propose that the Universe has any physical boundary in the first place, though some models propose it could be finite but unbounded, like a higher-dimensional analogue of the 2D surface of a sphere that is finite in area but has no edge. It is plausible that the galaxies within our observable universe represent only a minuscule fraction of the galaxies in the Universe. According to the theory of cosmic inflation and its founder, Alan Guth, if it is assumed that inflation began about 10−37 seconds after the Big Bang, then with the plausible assumption that the size of the Universe before the inflation occurred was approximately equal to the speed of light times its age, that would suggest that at present the entire universe's size is at least 3x1023 times larger than the size of the observable universe. There are also lower estimates claiming that the entire universe is in excess of 250 times larger than the observable universe.〔Universe Could be 250 Times Bigger Than What is Observable - by Vanessa D'Amico on February 8, 2011 http://www.universetoday.com/83167/universe-could-be-250-times-bigger-than-what-is-observable/〕
If the Universe is finite but unbounded, it is also possible that the Universe is ''smaller'' than the observable universe. In this case, what we take to be very distant galaxies may actually be duplicate images of nearby galaxies, formed by light that has circumnavigated the Universe. It is difficult to test this hypothesis experimentally because different images of a galaxy would show different eras in its history, and consequently might appear quite different. Bielewicz et al. claims to establish a lower bound of 27.9 gigaparsecs (91 billion light-years) on the diameter of the last scattering surface (since this is only a lower bound, the paper leaves open the possibility that the whole universe is much larger, even infinite). This value is based on matching-circle analysis of the WMAP 7 year data. This approach has been disputed.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Observable universe」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.